Effects of the stem cell factor, c-kit ligand, on human megakaryocytic cells.

نویسندگان

  • H Avraham
  • E Vannier
  • S Cowley
  • S X Jiang
  • S Chi
  • C A Dinarello
  • K M Zsebo
  • J E Groopman
چکیده

The kit ligand (KL), also termed stem cell factor (SCF), is a recently discovered hematopoietic growth factor that augments response of early progenitor cells to other growth factors and supports proliferation of continuous mast cell lines. Histological studies suggest that the receptor for SCF/KL, the c-kit proto-oncogene product, is present in bone marrow megakaryocytes. We studied the effects of SCF/KL on immortalized human megakaryocytic cell lines (CMK, CMK6, and CMK11-5) and on isolated human marrow megakaryocytes. Human SCF/KL alone or in combination with the hematopoietic growth factors, interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-6, stimulated proliferation of these megakaryocytic cell lines. SCF/KL treatment did not alter expression of gpIb, gpIIb/IIIa, LFA-1, ICAM-1, or GMP-140 in CMK cells. No effect on ploidy was observed. Furthermore, human SCF/KL induced expression of IL-1 alpha, IL-1 beta, IL-2, and IL-6 in CMK cells. In a fibrin clot system, SCF/KL modestly potentiated megakaryocyte colony formation when added alone to cultures containing CD34+, DR+ bone marrow cells. Addition of SCF/KL with IL-3 or GM-CSF to these cultures resulted in a more marked marrow megakaryocytic cells. SCF/KL may directly affect megakaryocytopoiesis, as well as secondarily modulate hematopoiesis through induction of cytokines in target cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FLT3 receptor expression on the surface of normal and malignant human hematopoietic cells.

FLT3 ligand is a hematopoietic growth factor that plays a key role in growth of primitive hematopoietic cells. FLT3 receptor mRNA is found in early hematopoietic progenitors and in human myeloid leukemia blasts. Much less is known about the surface expression of FLT3 receptor on human hematopoietic cells. Using human 125I-FLT3 ligand, we have identified and characterized surface FLT3 receptors ...

متن کامل

Chemotherapy-induced thrombocytopenia derives from the selective death of megakaryocyte progenitors and can be rescued by stem cell factor.

Thrombocytopenia is a common side effect of chemotherapy, responsible for increased risk of bleeding and delay of treatment schedules in cancer patients. It is currently unknown how chemotherapeutic agents affect platelet production and whether the platelet precursors megakaryocytes represent a direct target of cytotoxic drugs. We investigated the effects of chemotherapeutic agents on primary m...

متن کامل

Rescued by Stem Cell Factor Selective Death of Megakaryocyte Progenitors and Can Be Chemotherapy-Induced Thrombocytopenia Derives from the

Thrombocytopenia is a common side effect of chemotherapy, responsible for increased risk of bleeding and delay of treatment schedules in cancer patients. It is currently unknown how chemotherapeutic agents affect platelet production and whether the platelet precursors megakaryocytes represent a direct target of cytotoxic drugs. We investigated the effects of chemotherapeutic agents on primary m...

متن کامل

The receptor protein tyrosine phosphatase, PTP-RO, is upregulated during megakaryocyte differentiation and Is associated with the c-Kit receptor.

We have recently isolated a cDNA encoding a novel human receptor-type tyrosine phosphatase, termed PTP-RO (for a protein tyrosine phosphatase receptor omicron), from 5-fluorouracil-treated murine bone marrow cells. PTP-RO is a human homologue of murine PTPlambda and is related to the homotypically adhering kappa and mu receptor-type tyrosine phosphatases. PTP-RO is expressed in human megakaryoc...

متن کامل

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 1992